Structurally a dataframe is a 2D data structure with columns of potentially different types. You can think of it like a spreadsheet or a SQL table.

Functionally it recalls the corresponding pandas object but:

  1. allows just a subset of the operations of the Python Pandas Dataframe. ultra::dataframe covers the basic use case scenarios and isn't intended as a replacement for other tools which allows extensive data pre-processing;
  2. by default automatically splits an example in features (input) and label (output). It supports storing unlabeled examples (e.g. for unsupervised learning task or for storing examples to be classified);
  3. is more row oriented (whereas Pandas Dataframe is quite column oriented).

Basic functionality

Import data (CSV)

std::istringstream dataset(R"(
   A,   B, C,  D
  a0, 0.0, 0, d0
  a1, 0.1, 1, d1
  a2, 0.2, 2, d2)");

dataframe d;
d.read_csv(dataset);

Here we've:

d.columns[0].name() == "A"
d.columns[1].name() == "B"
d.columns[2].name() == "C"
d.columns[3].name() == "D"

By default the first column (column 0) is the output column. User can specify a different column:

std::istringstream dataset(R"(
   A,   B, C,  D
  a0, 0.0, 0, d0
  a1, 0.1, 1, d1
  a2, 0.2, 2, d2)");

d.read_csv(dataset, dataframe::params().output(2));

The output column is shifted to the first position, so:

d.columns[0].name() == "C"
d.columns[1].name() == "A"
d.columns[2].name() == "B"
d.columns[3].name() == "D"

The parser sniffs the presence of column headers. In case of error (CSV is a textbook example of how not to design a textual file format), user can signal the correct situation via the params::header() / params::no_header member functions.

To access label (output value) / features (input values):

std::cout << "Label of the first example is: " << lexical_cast<double>(d.front().output)
          << "\nFeatures are:"
          << "\nA: " << lexical_cast<std::string>(d.front().input[0])
          << "\nB: " << lexical_cast<double>(     d.front().input[1])
          << "\nD: " << lexical_cast<std::string>(d.front().input[2]) << '\n';

For unlabeled examples use the no_output modifier:

std::istringstream dataset(R"(
   A,   B, C,  D
  a0, 0.0, 0, d0
  a1, 0.1, 1, d1
  a2, 0.2, 2, d2)");

d.read_csv(dataset, dataframe::params().no_output());

In this case:

d.columns[0].name() == ""
d.columns[1].name() == "A"
d.columns[2].name() == "B"
d.columns[3].name() == "C"
d.columns[4].name() == "D"

a surrogate empty output column is added at the beginning and has_value(d.front().output) == false.

Columns

To access information about the column structure, use the columns member function:

std::cout << "Name of the first column: " << d.columns[0].name()
          << "\nCategory of the first column: " << d.columns[0].domain();

std::cout << "\nThere are " << d.columns.size() << " columns\n";

References